Partial Differential Equations
Partial Differential Equations, University of Toronto 2019 (APM346)
These are the materials from a course on partial differential equations I coordinated at the University of Toronto in Winter semester of 2019.
Lecture Notes
- Administration / Introduction to PDEs / What does it mean to solve a PDE? (pdf, mathematica)
- Transport equation / Wave equation / Heat equation (pdf, mathematica)
- Solving the transport equation (pdf, mathematica)
- Homogeneous 1d wave equation (pdf, mathematica)
- Characteristic coordinates / Duhamel’s formula (pdf, mathematica)
- Wave equation with boundary conditions (pdf, mathematica)
- 1d heat equation (pdf, mathematica)
- Heat equation in higher dimensions / Maximum principle (pdf)
- Wave equation on a finite interval (pdf, mathematica)
- Wave equation on a finite interval (ctd.) (pdf)
- Orthogonality of eigenfunctions / Fourier series / Gibbs phenomenon (pdf, mathematica)
- Periodic extensions / Complex Fourier series (pdf, mathematica)
- The Fourier transform (pdf)
- Application of the Fourier transform to PDEs (pdf)
- Separation of variables (pdf)
- The Laplace operator in different coordinate systems (pdf)
- The Laplace equation in polar coordinates (pdf)
- Higher dimensional Laplace equation / Unicity for the Laplace equation (pdf)
- Green’s functions / Separation of variables in spherical coordinates (pdf)
- Applications of spherical harmonics (pdf)
- Wave equation in 3d and 2d (pdf)
- Dirichlet’s principle / Variation of functionals (pdf)
- Calculus of Variations / Euler-Lagrange equations / Functionals with boundary terms (pdf)
- Point particles and the strings they love… (pdf)
Selected Notes and Problems
- Deriving the integral curve equations (pdf)
- Calculus of variation problems (pdf)
- Final exam practice problems (pdf, selected solution pdf)